An Interval Constraint Approach to Handle Parametric Ordinary Differential Equations for Decision Support
نویسندگان
چکیده
The behaviour of many systems is naturally modelled by a set of ordinary differential equations (ODEs) which are parametric. Since decisions are often based on relations over these parameters it is important to know them with sufficient precision to make those decisions safe. This is in principle an adequate field to use interval domains for the parameters, and constraint propagation to obtain safe bounds for them. Although complex, the use of interval constraints with ODEs is receiving increasing interest. However, the usual consistency maintenance techniques (boxand local hull-consistency) for interval domains are often insufficient to cope with parametric ODEs. In this paper we propose a stronger consistency requirement, global hull-consistency, and an algorithm to compute it. To speed up this computation we developed an incremental approach to refine as needed the precision of ODEs trajectories. Our methodology is illustrated with an example of decision support in a medical problem (diagnosis of diabetes).
منابع مشابه
Handling Differential Equations with Constraints for Decision Support
The behaviour of many systems is naturally modelled by a set of ordinary differential equations (ODEs) which are parametric. Since decisions are often based on relations over these parameters it is important to know them with sufficient precision to make those decisions safe. This is in principle an adequate field to use interval domains for the parameters, and constraint propagation to obtain ...
متن کاملOptimal Pruning in Parametric Differential Equations
Initial value problems for parametric ordinary differential equations (ODEs) arise in many areas of science and engineering. Since some of the data is uncertain, traditional numerical methods do not apply. This paper considers a constraint satisfaction approach that enhances traditional interval methods with a pruning component which uses a relaxation of the ODE and Hermite interpolation polyno...
متن کاملA Constraint Satisfaction Approach to Parametric Differential Equations
Parametric ordinary differential equations arise in many areas of science and engineering. Since some of the data is uncertain and given by intervals, traditional numerical methods do not apply. Interval methods provide a way to approach these problems but they often suffer from a loss in precision and high computation costs. This paper presents a constraint satisfaction approach that enhances ...
متن کاملA Constraint Satisfaction Approach for Enclosing Solutions to Parametric Ordinary Differential Equations
This paper considers initial value problems for ordinary differential equations (ODEs), where some of the data is uncertain and given by intervals as is the case in many areas of science and engineering. Interval methods provide a way to approach these problems, but they raise fundamental challenges in obtaining high accuracy and low computation costs. This work introduces a constraint satisfac...
متن کاملRational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999